FUNCTION OF BONE :
Mechanical
- Protection — Bones can serve to protect internal organs, such as the skull protecting the brain or the ribs protecting the heart and lungs.
- Shape — Bones provide a frame to keep the body supported.
- Movement — Bones, skeletal muscles, tendons, ligaments and joints function together to generate and transfer forces so that individual body parts or the whole body can be manipulated in three-dimensional space. The interaction between bone and muscle is studied in biomechanics.
- Sound transduction — Bones are important in the mechanical aspect of overshadowed hearing.
Synthetic
- Blood production — The marrow, located within the medullary cavity of long bones and interstices of cancellous bone, produces blood cells in a process called haematopoiesis.
Metabolic
- Mineral storage — Bones act as reserves of minerals important for the body, most notably calcium and phosphorus.
- Growth factor storage — Mineralized bone matrix stores important growth factors such as insulin-like growth factors, transforming growth factor, bone morphogenetic proteins and others.
- Fat Storage — The yellow bone marrow acts as a storage reserve of fatty acids
- Acid-base balance — Bone buffers the blood against excessive pH changes by absorbing or releasing alkaline salts.
- Detoxification — Bone tissues can also store heavy metals and other foreign elements, removing them from the blood and reducing their effects on other tissues. These can later be gradually released for excretion.
TYPES OF BONE :
There are five types of bones in the human body: long, short, flat, irregular and sesamoid.
- Long bones are characterized by a shaft, the diaphysis, that is much greater in length than width. They are comprised mostly of compact bone and lesser amounts of marrow, which is located within the medullary cavity, and spongy bone. Most bones of the limbs, including those of the fingers and toes, are long bones. The exceptions are those of the wrist, ankle and kneecap.
- Short bones are roughly cube-shaped, and have only a thin layer of compact bone surrounding a spongy interior. The bones of the wrist and ankle are short bones, as are the sesamoid bones.
- Flat bones are thin and generally curved, with two parallel layers of compact bones sandwiching a layer of spongy bone. Most of the bones of the skull are flat bones, as is the sternum.
- Irregular bones do not fit into the above categories. They consist of thin layers of compact bone surrounding a spongy interior. As implied by the name, their shapes are irregular and complicated. The bones of the spine and hips are irregular bones.
- Sesamoid bones are bones embedded in tendons. Since they act to hold the tendon further away from the joint, the angle of the tendon is increased and thus the leverage of the muscle is increased. Examples of sesamoid bones are the patella and the pisiform
BONE FORMATION
The formation of bone during the fetal stage of development occurs by two processes: Intramembranous ossification and endochondral ossification.
Intramembranous ossification mainly occurs during formation of the flat bones of the skull; the bone is formed from mesenchyme tissue. The steps in intramembranous ossification are:
- Development of ossification center
- Calcification
- Formation of trabeculae
- Development of periosteum
No comments:
Post a Comment